The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle
نویسندگان
چکیده
Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (-50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release.
منابع مشابه
Dantrolene Inhibition of Sarcoplasmic Reticulum Ca Release by Direct and Specific Action at Skeletal Muscle Ryanodine Receptors*
The skeletal muscle relaxant dantrolene inhibits the release of Ca from the sarcoplasmic reticulum during excitation-contraction coupling and suppresses the uncontrolled Ca release that underlies the skeletal muscle pharmacogenetic disorder malignant hyperthermia; however, the molecular mechanism by which dantrolene selectively affects skeletal muscle Ca regulation remains to be defined. Here w...
متن کاملBRIEF REVIEWS Calcium Release from the Sarcoplasmic Reticulum
Calcium that induces contraction by interacting with the contractile proteins of muscle cells may be derived from different sources: extracellular space including the basement membrane, sarcoplasmic reticulum (SR) and, under certain circumstances, mitochondria." Among these sources of Ca for excitation-contraction coupling the contribution of the SR varies between different types of muscles: ca...
متن کاملXestoquinone, isolated from sea sponge, causes Ca(2+) release through sulfhydryl modification from skeletal muscle sarcoplasmic reticulum.
Xestoquinone (XQN) (3 x 10(-7) to 3 x 10(-3) M), isolated from the sea sponge Xestospongia sapra, induced a concentration-dependent Ca(2+) release from the heavy fraction of fragmented sarcoplasmic reticulum (HSR) of rabbit skeletal muscle with an EC(50) value of approximately 30 microM. On the basis of the EC(50), XQN is 10 times more potent than caffeine. Dithiothreitol completely blocked XQN...
متن کاملCalmodulin in adult mammalian skeletal muscle: localization and effect on sarcoplasmic reticulum Ca release
Rodney George G. Calmodulin in adult mammalian skeletal muscle: localization and effect on sarcoplasmic reticulum Ca release. Am J Physiol Cell Physiol 294: C1288–C1297, 2008. First published March 5, 2008; doi:10.1152/ajpcell.00033.2008.—Calmodulin is a ubiquitous Ca binding protein that binds to ryanodine rectors (RyR) and is thought to modulate its activity. Here we evaluated the effects of ...
متن کاملLactate inhibits Ca(2+) -activated Ca(2+)-channel activity from skeletal muscle sarcoplasmic reticulum.
Sarcoplasmic reticulum (SR) Ca(2+)-release channel function is modified by ligands that are generated during about of exercise. We have examined the effects of lactate on Ca(2+)- and caffeine-stimulated Ca2+ release, [3H]ryanodine binding, and single Ca(2+)-release channel activity of SR isolated from rabbit white skeletal muscle. Lactate, at concentrations from 10 to 30 mM, inhibited Ca(2+)- a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 97 شماره
صفحات -
تاریخ انتشار 1991